Publishable summaries:
– ALIGHT Period 1 summary
– ALIGHT Period 2 summary
Articles published in 2016:
-“High bandwidth freestanding semipolar (11-22) InGaN/GaN light emitting diodes” Z. H. Quan, et al. accepted in IEEE Photonis Journal (2016)
-“Combined electrical and resonant optical excitation characterization of multi-quantum-well InGaN-based light emitting diodes” S. Presa, et al. AIP Advances 6, 075108 (2016)
-“Exciton localization in semipolar (11-22) InGaN multiple quantum wells” D. V. Dinh, et al. J. Appl. Phys 120, 055705 (2016)
-“Scalable semipolar gallium nitride templates for high-speed LEDs“, B. Corbett et al. SPIE Newsroom, (2016)
-“In-situ control of large ara (11-22) GaN growth on patterned r-plane sapphire“, F. Brunner, J. Cryst. Growth (2016)
-“Influence of trench period and depth on MOVPE grown (11-22) GaN on patterned r-plane sapphire substrates” M. Caliebe, et al. J. Cryst. Growth 440, 69 (2016)
-“Growth and coalescence studies of (11-22) oriented GaN on pre-structured sapphire substrates using marker layers“, M. Caliebe, et al. Status Solidi B, 253, 46 (2016)
-“Exciton localization in polar and semipolar (11-22) In0.2Ga0.8N/GaN multiple quantum wells“, D. V. Dinh, et al. Semi. Sci. and Tech. 31, 085006 (2016)
-“Strong nonparabolic variation of the bandgap in InAlN with low indium content“, V. Z. Zubialevich, et al., Semi. Sci. and Tech. 31, 025006 (2016)
-“Polar and semipolar (11-22) InAlN layers grown on AlN templates by MOVPE“, D. V. Dinh, et al., Phys. Status Solidi B 253, 99 (2016)
-“MOVPE growth and Indium incorporation of polar, semipolar (11-22) and (20-21) InGaN“, D. V. Dinh, et al., Phys. Status Solidi B 253, 93 (2016)
-“Effect of V/III ratio on the growth on semipolar (11-22) AlGaN by metalorganic vapour phase epitaxy“, D. V. Dinh, et al., J. Cryst. Growth 435, 12 (2016)
-“Development of semipolar (11-22) LEDs on GaN templates“, B. Corbett et al., Proc. SPIE 9768, 97681G (2016)
-“Semipolar GaN-based heterostructures on foreign substrates”, Ferdinand Scholz et al., Phys. Status Solidi B 253, No. 1, 13 (2016)
-“Fluorescence microscopy investigation of InGaN-based light-emitting diodes”, S. Presa el., IET Optoelectronics 10, 39 (2016)
-“Comparative study of (0001) and (11-22) InGaN based light emitting diodes”, M. Pristovsek et al., Jap. J. Appl. Phys. (2016)
Articles published in 2015:
-“Improvements of MOVPE grown (11-22) oriented GaN on pre-structured sapphire substrates using a SiNx interlayer and HVPE overgrowth”, M. Caliebe, et al., Phys. Status Solidi C 11, 525 (2015)
-“Band gap bowing and optical polarization switching in Al1−xGaxN alloys“, C. Coughlan et al., Phys. Status Solidi B (2015)
-“Semipolar (20- 23) nitrides grown on 3C-SiC/(001)Si substrates” D. V. Dinh, et al., Semi. Sci. and Tech. 30, (12), (2015)
-“Semipolar (11-22) InGaN light-emitting diodes grown on chemical-mechanical polished GaN templates“, Duc V. Dinh et al., Phys. Status Solidi A 212, (10), pp. 2196–2200, (2015)
-“Toward defect-free semi-polar GaN templates on pre-structured sapphire“, Y. Han et al., Phys. Status Solidi B, 1–6 (2015)
-“Ab initio-based bulk and surface thermodynamics of InGaN alloys: Investigating the effects of strain and surface polarity“, A. Duff et al., Phys. Status Solidi B, 252, 855 (2015)
-“Low defect large area semi-polar (11-22) GaN grown on patterned (113) silicon” M. Pristovsek et al., Phys. Status Solidi B, 252, No. 5, 1104-1108 (2015)
-“Effects of miscut of prestructured sapphire substrates and MOVPE growth conditions on (11-22) oriented GaN“, M. Caliebe et. al., J. Cryst. Growth 414, (2015) 100-1045
-“Single phase (11-22) AlN grown on (10-10) sapphire by metalorganic vapour phase epitaxy“,D. V. Dinh et. al., J. Cryst. Growth 414, p94–99 (2015).
-“Origin of faceted surface hillocks on semi-polar11-22 ) GaN templates grown on pre-structured sapphire“, Y. Han et. al., J. Cryst. Growth 415, 1 April 2015, Pages 170–175
-“Color stability, wave function overlap and leakage currents in InGaN-based LED structures: The role of the substrate orientation“, G. Kozlowski, et. al., Semi. Sci. Tech. 30, 055014 (2015)
-“Semi-polar (11-22)-GaN templates grown on 100 mm trench-patterned r-plane sapphire“, F. Brunner et. al., Phys. Status Solidi B 252, No. 5, 1189–1194 (2015)
-“Electronic structure of polar and semi-polar (11-22) nitride-based dot-in-a-well systems“, S. Schulz et al., Phys. Rev. Appl. 3, Iss. 6 (2015)
-“Semipolar (11 ¯ 22) InGaN light-emitting diodes grown on chemically–mechanically polished GaN templates“, D. V. Dinh et. al., Phys. Status Solidi A, 1-5 (2015)
Articles published in 2014:
-“Improvements of MOVPE grown (11-22) oriented GaN on pre-structured sapphire substrates using a SiNx interlayer and HVPE overgrowth“, M. Caliebe et al., Phys. Status Solidi C 11, No. 3-4, 525-529 (2014).
-“Low defect large area semi-polar (11-22) GaN grown on patterned (113) silicon“, M. Pristovsek et al., Phys. Status Solidi B (2014).
-“Spectroscopic study of semipolar (11-22) HVPE GaN exhibiting high oxygen incorporation“, P. Schustek et al., J. of Appl. Phys. 116, 163515 (2014).
– “Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab-initio approach“, A. Duff et al., Phys. Rev.B 89, 085307 (2014).
– “Comparative study of polar and semipolar (11-22) InGaN layers grown by metalorganic vapour phase epitaxy“, Duc V. Dinh et al., J. of Appl. Phys. 116, 153505 (2014).
– “Growth and doping of semipolar GaN grown on patterned sapphire substrates”, F. Scholz et al, J. Cryst. Growth (2014).
– “Polarization matching design of InGaN-based semi-polar quantum wells — A case study of (112¯2) orientation”, G. Kozlowski et al., Appl. Phys. Lett. 104, 051128 (2014).
Articles published in 2013:
– “Composition dependent band gap and band edge bowing in AlInN: A combined theoretical and experimental study”, S. Schulz et al., APEX 6, 121001 (2013).
– “Theory of local electric polarization and its relation to internal strain: impact on the polarization potential and electronic properties of group-III nitrides”, M. A. Caro e. al., Phys. Rev. B 88, 214103 (2013).
– “Wavelength limits for InGaN quantum wells on GaN”, M. Pristovsek, Appl. Phys. Lett. 102, 242105 (2013).